

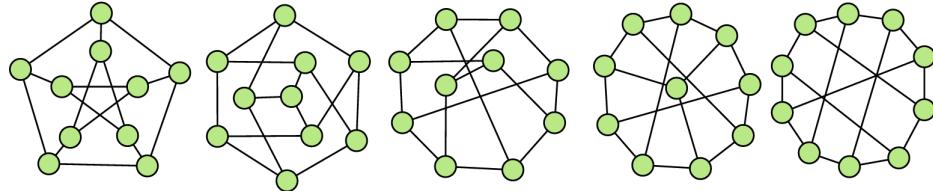
Exercise Set #8

“Discrete Mathematics” (2025)

Exercise 8 is to be submitted on Moodle before 23:59 on April 14th, 2025

E1. (a) Is there a graph with 6 vertices with degrees 2, 3, 3, 3, 3, 3?
(b) How many labeled graphs are there with 4 vertices with degrees 1, 1, 2, 2?

E2. Are all the graphs below isomorphic to each other? Which ones are/are not? Why?
Hint: Try to move around the vertices of the graphs using a pencil and an eraser, or on a whiteboard.



E3. Let $G = (V, E)$ be a graph and let $|V| = n$.

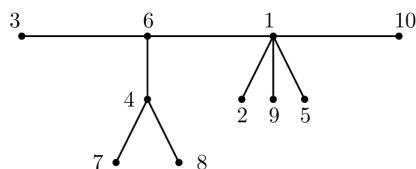
(a) What is the maximum number of automorphisms (isomorphisms from G to G) possible?
Can you find a graph G with this number of automorphisms?
(b) What is the least number of automorphism possible? Can you find a graph with those many automorphisms?

E4. Find the trees that have the following Prüfer sequences:

$$(4, 4, 3, 1, 1); (4, 2, 1, 1, 3)$$

E5. (a) Describe which Prüfer codes correspond to stars (i.e. to trees where one vertex is connected to all other vertices)
(b) Describe what trees correspond to Prüfer codes containing exactly 2 different values.
(c) And which trees have all distinct values in their Prüfer codes?

E6. What is the Prüfer code of the following tree?



E7. Let v be a vertex of a labeled tree T . Suppose v has degree d , then show that the label of v appears in the Prüfer code of T exactly $d - 1$ times.

E8. (Exercise to submit)

If C is a cycle, and e is an edge connecting two nonadjacent nodes of C , then we call e a *chord* of C . Prove that if every node of a graph G has degree at least 3, then G contains a cycle with a chord.